

2020 DRINKING WATER QUALITY REPORT

(Consumer Confidence Report)

CITY OF BURKBURNETT

Phone Number 940-569-2263

PWS ID Number: TX2430005

PWS Name: CITY OF BURKBURNETT

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

For more information regarding this report contact:

Name: Mike Whaley

Phone: 940-569-2263

Este reporte incluye información importante sobre el agua para tomar.

Para asistencia en español, favor de llamar al teléfono (940) 569-2263.

**CITY OF
BURKBURNETT
Sources of drinking
water are
Ground Water &
Purchased Surface
Water**

Annual Water Quality Report for the period of January 1 to December 31, 2020

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

The TCEQ completed an assessment of your source water and results indicated that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Mike Whaley, (940) 569-2263.

Opportunities for public participation in decision making about the quality of the water will be held at the regularly scheduled Board of Commissioners meeting. The

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems.

FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

BOC meetings are held every third Monday of every month at 7 PM in the Council Chambers of Burkburnett City Hall.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: <http://www.tceq.texas.gov/gis/swaview>.

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: <http://dww2.tceq.texas.gov/DWW/>.

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU: nephelometric turbidity units (a measure of turbidity)

pCi/L: picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion- or one ounce in 7,350,000 gallons of water

ppm: milligrams per liter or parts per million -or one once in 7,350 gallons of water

ppq: parts per quadrillion, or picograms per liter (pg/L)

ppt: parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Information About Source Water Assessments

Source Water Name	Type of Water	Report Status	Location	Source Water Name	Type of Water	Report Status	Location
BULLDOG #10	GW	Active	Seymour Aquifer	ELLIS #1	GW	Active	Seymour Aquifer
BULLDOG #11	GW	Active	Seymour Aquifer	ELLIS #2	GW	Active	Seymour Aquifer
BULLDOG #13	GW	Active	Seymour Aquifer	ELLIS #3	GW	Active	Seymour Aquifer
BULLDOG #14 - CR705	GW	Active	Seymour Aquifer	ELLIS #4	GW	Active	Seymour Aquifer
BULLDOG #16A - CR705	GW	Active	Seymour Aquifer	ELLIS #5	GW	Active	Seymour Aquifer
BULLDOG #17A	GW	Active	Seymour Aquifer	ELLIS #6	GW	Active	Seymour Aquifer
BULLDOG #18A	GW	Active	Seymour Aquifer	ELLIS #7	GW	Active	Seymour Aquifer
BULLDOG #21 - CR705	GW	Active	Seymour Aquifer	ELLIS #8	GW	Active	Seymour Aquifer
BULLDOG #22	GW	Active	Seymour Aquifer	ELLIS RODEO #2	GW	Active	Seymour Aquifer
BULLDOG #2A - CR705	GW	Active	Seymour Aquifer	ELLIS RODEO #3	GW	Active	Seymour Aquifer
BULLDOG #3 - CR705	GW	Active	Seymour Aquifer	FRIENDSHIP TRAIL	GW	Active	Seymour Aquifer
BULLDOG #3A	GW	Active	Seymour Aquifer	HURD H #1	GW	Active	Seymour Aquifer
BULLDOG #4A	GW	Active	Seymour Aquifer	HURD H #2	GW	Active	Seymour Aquifer
BULLDOG #5 - CR705	GW	Active	Seymour Aquifer	HURD H #3	GW	Active	Seymour Aquifer
BULLDOG #7	GW	Active	Seymour Aquifer	HURD H #4	GW	Active	Seymour Aquifer
BULLDOG #8 - CR705	GW	Active	Seymour Aquifer	HURD T #1	GW	Active	Seymour Aquifer
BULLDOG #9	GW	Active	Seymour Aquifer	HURD T #2	GW	Active	Seymour Aquifer
BURK #1	GW	Active	Seymour Aquifer	HURD T #3	GW	Active	Seymour Aquifer
BURK #2	GW	Active	Seymour Aquifer	HURD T #4	GW	Active	Seymour Aquifer
BURK #3	GW	Active	Seymour Aquifer	MARTON #1	GW	Active	Seymour Aquifer
BURK #4	GW	Active	Seymour Aquifer	MARTON #2	GW	Active	Seymour Aquifer
BURK #6	GW	Active	Seymour Aquifer	MARTON #3	GW	Active	Seymour Aquifer
BURK #7	GW	Active	Seymour Aquifer	MCCLURE #1	GW	Active	Seymour Aquifer
BURK #8	GW	Active	Seymour Aquifer	MCCLURE #2	GW	Active	Seymour Aquifer
BURK #9	GW	Active	Seymour Aquifer	MCCLURE #3	GW	Active	Seymour Aquifer
BURK #10	GW	Active	Seymour Aquifer	MCCLURE #4	GW	Active	Seymour Aquifer
CAFFEE #2	GW	Active	Seymour Aquifer	PREScott #1	GW	Active	Seymour Aquifer
CAFFEE #3	GW	Active	Seymour Aquifer	PREScott #2	GW	Active	Seymour Aquifer
CAFFEE #4	GW	Active	Seymour Aquifer	PREScott #3	GW	Active	Seymour Aquifer
CAFFEE #5	GW	Active	Seymour Aquifer	PREScott #5	GW	Active	Seymour Aquifer
CAFFEE #6	GW	Active	Seymour Aquifer	PREScott #6	GW	Active	Seymour Aquifer
CARNES #4	GW	Active	Seymour Aquifer	PREScott #7	GW	Active	Seymour Aquifer
CARNES #5	GW	Active	Seymour Aquifer	PREScott #8	GW	Active	Seymour Aquifer
CARNES #6	GW	Active	Seymour Aquifer	PREScott #9	GW	Inactive	Seymour Aquifer
CARNES #6A	GW	Active	Seymour Aquifer	PREScott #10	GW	Active	Seymour Aquifer
CARNES ALLEY #1	GW	Active	Seymour Aquifer	SLAMA #1	GW	Active	Seymour Aquifer
CARNES ALLEY #2	GW	Active	Seymour Aquifer	SLAMA #2	GW	Active	Seymour Aquifer
COOPER #1	GW	Active	Seymour Aquifer	SLAMA GREEN #1	GW	Active	Seymour Aquifer
COOPER #2	GW	Active	Seymour Aquifer	SLAMA GREEN #2	GW	Active	Seymour Aquifer
COOPER #3	GW	Active	Seymour Aquifer	SLAMA GREEN #3	GW	Active	Seymour Aquifer
COOPER #4	GW	Active	Seymour Aquifer	SW FROM WICHITA FALLS	SW	Active	Lake Kickapoo

CC FROM TX2430001 CITY OF

2020 Regulated Contaminants Detected

Lead and Copper Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2019	1.3	1.3	0.1761	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2019	0	15	2.9	1	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

City of Burk Burnett Regulated Contaminants

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)*	2020	6	0 - 8	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year¹.

Total Trihalomethanes (TTHM)	2020	19	1.01 - 48.2	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
------------------------------	------	----	-------------	-----------------------	----	-----	---	--

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year¹.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2019	0.18	0.18 - 0.18	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2020	0.395	0.395 - 0.395	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2020	8	2.96 - 10.9	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits

*Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	02/29/2016	1.5	1.5 - 1.5	0	5	pCi/L	N	Erosion of natural deposits.

Water Quality Test Results

Disinfectant Residual								
Disinfectant	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation	Likely Source of Contamination
Chlorine	2020	2.47mg/L	1.00 - 4.00	4	4	mg/L	N	Water additive used to control microbes.

City of Wichita Falls

Constituent	Wichita Falls Water Results		EPA Regulations		Analysis Year
	Reportable Value	Range of Detection	Maximum Contaminant Level	Maximum Contaminant Level Goal	
Aluminum; ppm Natural Geology; Rock and Soil Erosion	0.016	<0.005 - 0.016	0.2	0.2	2020
Barium; ppm Natural Geology; Drilling Waste	0.032	0.030 - 0.032	2	2	2020
Fluoride; ppm Water Additive; Natural Geology	0.768	0.614 - 0.768	4	4	2020
Nitrate; ppm Fertilizer Runoff; Septic Tanks; Animal Waste	0.194	0.093 - 0.194	10	10	2020
Nitrite; ppm Fertilizer Runoff; Septic Tanks; Animal Waste	0.07	<0.0008 - 0.065	1	1	2015
Total Organic Carbon; ppm Naturally Present in the Environment	7.23	<0.10 - 7.23	TT	N/A	2020
Turbidity; NTU Soil Runoff	0.31	0.03 - 0.31	TT = 0.3	N/A	2020
Combined Radium 226/228; pCi/L Decay of Natural & Man-Made Deposits	1	1 - 1	5	0	2011
Gross Beta Emitters; pCi/L Decay of Natural & Man-Made Deposits	8.4	8.4 - 8.4	50	0	2017

Constituent	Wichita Falls Water Results		EPA Regulations		Analysis Year
	Reportable Value	Range of Detection	MRDL	MRDLG	
Chlorine Dioxide; ppm Disinfectant	0.36	<0.10 - 0.36	0.8	0	2020
Chlorine (Total); ppm Disinfectant (MRDL for running annual average)	4.2	2.8 - 4.2	4	<4.0	2020

Constituent	Wichita Falls Water Results		EPA Regulations		Analysis Year
	Reportable Value	Range of Detection	Maximum Contaminant Level	Maximum Contaminant Level Goal	
Total Trihalomethane; ppb By-Product of Chlorination	28.1	11.4 - 28.1	80	0	2020
Haloacetic Acid 5; ppb By-Product of Chlorination	28.4	11.0 - 28.4	60	0	2020
Chlorite; ppm By-Product of Chlorine Dioxide	0.57	<0.01 - 0.57	1	0	2020

Constituent	Wichita Falls Water Results		EPA Regulations		Analysis Year
	Reportable Value	90th Percentile	Maximum Contaminant Level	Maximum Contaminant Level Goal	
Lead; ppb Corrosion of Household Plumbing	2.8	2.8	15	0	2018
Copper; ppm Corrosion of Household Plumbing	0.085	0.085	1.3	1.3	2018

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Constituent	Total Coliform Bacteria		E. coli Bacteria		Analysis Year
	MCL	Highest No. of Positive	MCL	Highest No. of Positive	
Coliform Bacteria	5	0	1	0	2020

Coliform bacteria are naturally present in the environment.

PRSR STD
ECRWSS
U.S.POSTAGE
PAID
EDDM RETAIL

2020 DRINKING WATER QUALITY REPORT

(Consumer Confidence Report)

CITY OF BURKBURNETT

Phone Number 940-569-2263

The City of Burkburnett purchases supplemental water from the City of Wichita Falls, TX . The City of Wichita Falls obtains surface water from Lake Arrowhead, Lake Kemp via the Wichita River to lake,

Local
Postal Customer

Lake Kickapoo, located in Wichita County. Mark Southard, Purification Superintendent, with the City of Wichita Falls can be reached at (940) 691-1153.