

2021 DRINKING WATER QUALITY REPORT

(Consumer Confidence Report)

CITY OF BURKBURNETT
Phone Number 940-569-2263

The City of Burkburnett purchases supplemental water from the City of Wichita Falls, TX . The City of Wichita Falls obtains surface water from Lake Arrowhead, Lake Kemp via the Wichita River to lake,

Local
Postal Customer

PRSR STD
ECRWSS
U.S.POASTAGE
PAID
EDDM RETAIL

Lake Kickapoo, located in Wichita County. Mark Southard, Purification Superintendent, with the City of Wichita Falls can be reached at (940) 691-1153.

2021 DRINKING WATER QUALITY REPORT
(Consumer Confidence Report)
CITY OF BURKBURNETT
Phone Number 940-569-2263
PWS ID Number: TX2430005
PWS Name: CITY OF BURKBURNETT

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

For more information regarding this report contact:

Name: Mike Whaley
Phone: 940-569-2263

Este reporte incluye información importante sobre el agua para tomar.
Para asistencia en español, favor de llamar al teléfono (940) 569-2263.

Annual Water Quality Report for the period of January 1 to December 31, 2021

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

The TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact Mike Whaley, (940) 569-2263.

Opportunities for public participation in decision making about the quality of the water will be held at the regularly scheduled Board of Commissioners meeting. The

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU: nephelometric turbidity units (a measure of turbidity)

pCi/L: picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion

ppm: milligrams per liter or parts per million

ppq: parts per quadrillion, or picograms per liter (pg/L)

ppt: parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

BURKBURNETT
Texas
You're Home Now!
June 2021

**CITY OF
BURKBURNETT**
Sources of drinking
water are
Ground Water &
Purchased Surface
Water

Information About Source Water Assessments

Water Quality Test Results

Source Water Name	Type of Water	Report Status	Location
BULLDOG #10	GW	Active	Seymour Aquifer
BULLDOG #11	GW	Active	Seymour Aquifer
BULLDOG #13	GW	Active	Seymour Aquifer
BULLDOG #14 - CR705	GW	Active	Seymour Aquifer
BULLDOG #16A - CR705	GW	Active	Seymour Aquifer
BULLDOG #17A	GW	Active	Seymour Aquifer
BULLDOG #18A	GW	Active	Seymour Aquifer
BULLDOG #21 - CR705	GW	Active	Seymour Aquifer
BULLDOG #22	GW	Active	Seymour Aquifer
BULLDOG #2A - CR705	GW	Active	Seymour Aquifer
BULLDOG #3 - CR705	GW	Active	Seymour Aquifer
BULLDOG #3A	GW	Active	Seymour Aquifer
BULLDOG #4A	GW	Active	Seymour Aquifer
BULLDOG #5 - CR705	GW	Active	Seymour Aquifer
BULLDOG #7	GW	Active	Seymour Aquifer
BULLDOG #8 - CR705	GW	Active	Seymour Aquifer
BULLDOG #9	GW	Active	Seymour Aquifer
BURK #1	GW	Active	Seymour Aquifer
BURK #2	GW	Active	Seymour Aquifer
BURK #3	GW	Active	Seymour Aquifer
BURK #4	GW	Active	Seymour Aquifer
BURK #6	GW	Active	Seymour Aquifer
BURK #7	GW	Active	Seymour Aquifer
BURK #8	GW	Active	Seymour Aquifer
BURK #9	GW	Active	Seymour Aquifer
BURK #10	GW	Active	Seymour Aquifer
CAFFEE #2	GW	Active	Seymour Aquifer
CAFFEE #3	GW	Active	Seymour Aquifer
CAFFEE #4	GW	Active	Seymour Aquifer
CAFFEE #5	GW	Active	Seymour Aquifer
CAFFEE #6	GW	Active	Seymour Aquifer
CARNES #4	GW	Active	Seymour Aquifer
CARNES #5	GW	Active	Seymour Aquifer
CARNES #6	GW	Active	Seymour Aquifer
CARNES #6A	GW	Active	Seymour Aquifer
CARNES ALLEY #1	GW	Active	Seymour Aquifer
CARNES ALLEY #2	GW	Active	Seymour Aquifer
COOPER #1	GW	Active	Seymour Aquifer
COOPER #2	GW	Active	Seymour Aquifer
COOPER #3	GW	Active	Seymour Aquifer
COOPER #4	GW	Active	Seymour Aquifer

Source Water Name	Type of Water	Report Status	Location
ELLIS #1	GW	Active	Seymour Aquifer
ELLIS #2	GW	Active	Seymour Aquifer
ELLIS #3	GW	Active	Seymour Aquifer
ELLIS #4	GW	Active	Seymour Aquifer
ELLIS #5	GW	Active	Seymour Aquifer
ELLIS #6	GW	Active	Seymour Aquifer
ELLIS #7	GW	Active	Seymour Aquifer
ELLIS #8	GW	Active	Seymour Aquifer
ELLIS RODEO #2	GW	Active	Seymour Aquifer
ELLIS RODEO #3	GW	Active	Seymour Aquifer
FRIENDSHIP TRAIL	GW	Active	Seymour Aquifer
HURD H #1	GW	Active	Seymour Aquifer
HURD H #2	GW	Active	Seymour Aquifer
HURD H #3	GW	Active	Seymour Aquifer
HURD H #4	GW	Active	Seymour Aquifer
HURD T #1	GW	Active	Seymour Aquifer
HURD T #2	GW	Active	Seymour Aquifer
HURD T #3	GW	Active	Seymour Aquifer
HURD T #4	GW	Active	Seymour Aquifer
MARTON #1	GW	Active	Seymour Aquifer
MARTON #2	GW	Active	Seymour Aquifer
MARTON #3	GW	Active	Seymour Aquifer
MCCLURE #1	GW	Active	Seymour Aquifer
MCCLURE #2	GW	Active	Seymour Aquifer
MCCLURE #3	GW	Active	Seymour Aquifer
MCCLURE #4	GW	Active	Seymour Aquifer
PREScott #1	GW	Active	Seymour Aquifer
PREScott #2	GW	Active	Seymour Aquifer
PREScott #3	GW	Active	Seymour Aquifer
PREScott #5	GW	Active	Seymour Aquifer
PREScott #6	GW	Active	Seymour Aquifer
PREScott #7	GW	Active	Seymour Aquifer
PREScott #8	GW	Active	Seymour Aquifer
PREScott #9	GW	Inactive	Seymour Aquifer
PREScott #10	GW	Active	Seymour Aquifer
SLAMA #1	GW	Active	Seymour Aquifer
SLAMA #2	GW	Active	Seymour Aquifer
SLAMA GREEN #1	GW	Active	Seymour Aquifer
SLAMA GREEN #2	GW	Active	Seymour Aquifer
SLAMA GREEN #3	GW	Active	Seymour Aquifer
SW FROM WICHITA FALLS	SW	Active	Lake Kickapoo

CC FROM TX2430001 CITY OF

2021 Regulated Contaminants Detected

Lead and Copper Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	03/31/2019	1.3	1.3	0.1761	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead	03/31/2019	0	15	2.9	1	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

City of Burk Burnett Regulated Contaminants

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2021	8	0 - 16.3	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes (TTHM)	2021	36	2.36 - 64.8	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
								*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	01/29/2019	0.18	0.18 - 0.18	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	06/02/2020	0.395	0.395 - 0.395	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2021	29	2.9 - 29.1	10	10	ppm	Y	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	02/29/2016	1.5	1.5 - 1.5	0	5	pCi/L	N	Erosion of natural deposits.

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chlorine	2021	2.01	1.00 - 3.00	4	4	mg/l	N	Water additive used to control microbes.

Violations

Nitrate [measured as Nitrogen]							
Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.							
Violation Type	Violation Begin	Violation End	Violation Explanation				
MCL, SINGLE SAMPLE	07/01/2021	09/30/2021	A water sample showed that the amount of this contaminant in our drinking water was above its standard (called a maximum contaminant level and abbreviated MCL) for the period indicated.				
MCL, SINGLE SAMPLE	10/01/2021	12/31/2021	A water sample showed that the amount of this contaminant in our drinking water was above its standard (called a maximum contaminant level and abbreviated MCL) for the period indicated.				

City of Wichita Falls

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	
--	-----------------	------------------------	--------------------------	------	-----	--